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Statistical hydromechanics of disperse systems. 
Part 3. Pseudo-turbulent structure of homogeneous 

suspensions 
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(Received 8 March 1972) 

The theory of concentrated two-phase mixtures developed in the previous parts 
of this paper is applied to analysis of the structure of the local random motion 
(pseudo-turbulence) occurring in flows of suspensions of small solid spheres. 
Suspensions under study are assumed to be locally homogeneous in the sense 
that large-scale agglomerates of many particles or voids filled with the pure 
liquid do not arise in their flows and particles can be approximately regarded as 
statistically independent units. 

Coefficients of the particle diffusion caused by pseudo-turbulence are calcu- 
lated without restrictions imposed on the value of the Reynolds number Re 
characterizing the fluid flow around one particle. Other pseudo-turbulent 
quantities (the r.m.s. pseudo-turbulent velocities of both phases, their effective 
pseudo-turbulent viscosities in a shear flow, etc.) are considered for small Re. 
In  particular, a natural explanation is given to the known effect of the reduced 
hydraulic resistance of a fluidized bed as compared with that of a stationary 
particulate bed of the same porosity. 

Additionally, some properties of the mean motion of a suspension influenced by 
pseudo-turbulence are discussed brifly. By way of example, two problems are 
considered: stability of the upward flow of a homogeneous suspension with 
respect to small perturbations depending upon the vertical co-ordinate and time, 
and the spatial distribution of particles suspended by the upward flow of a fluid 
under gravity. 

1. Introduction 
As follows from the theory in the first parts of this paper (Buyevich 1971,1972, 

henceforth denoted by I and I1 respectively), the pseudo-turbulent motion of 
particles and a fluid represents an inherent property of any disperse system and 
influences its ‘macroscopic’ mean motion. The immediate objective of this part is 
to illustrate the general theory suggested in I and I1 by considering some parti- 
cular examples of its application both to analysis of statistical properties of 
pseudo-turbulence in a given state of a disperse system and to investigation of 
the macroscopic behaviour of this system under certain external conditions. 
Obviously, this objective agrees well with two primary aims of the theory itself, 
formulated in I. It goes without saying, of course, that results of such a 
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treatment may be of independent interest for various particular problems con- 
cerning the disperse system under study. 

Experiments as well as certain estimates based upon the theory in I show that 
flow patterns of two different types are possible within real flows of a disperse 
system. First, there are situations when the microscopic structure of a flow is 
locally homogeneous, so that suspended particles behave on an average like 
statistically independent elements. Second, in some flows (e.g. in fluidized beds 
of coarse particles) agglomerates containing a large number of particles or, on 
the other hand, macroscopic voids filled with pure suspending fluid can appear, 
i.e. there exists an essential interaction between neighbouring particles. For the 
sake of simplicity, here we confine ourselves to investigation of locally homo- 
geneous flows, employing all the assumptions, restrictions and notation intro- 
duced previously in I and 11. 

The real velocities of the fluid and particles, the pressure and the volume 
concentration of a monodisperse suspension are (v) + v’, (w) + w‘, ( p )  +p’ and 
(p)+p’, respectively. The first terms of these expressions denote the come- 
sponding dynamic quantities and are related to the mean motion of both phases 
looked upon as two co-existing continua. The second terms are the pseudo- 
turbulent random pulsations, which can be represented in the form of Fourier- 
Stieltjes integrals, i.e. 

v’ = e i ( w t + b )  dz,, w’ = j ei(wt+b) dZ,, etc. s 
Stochastic equations for these random processes have been derived in I from 

the Langevin equation for one particle and modified Navier-Stokes equations 
governing flow of the fluid through a random lattice formed by all suspended 
particles. From the stochastic equations mentioned one easily obtains the fol- 
lowing equations for the spectral measures appearing in the Fourier-Stieltjes 
representations of the random processes under study: 

(w + uk) dZp - ekdZ, = 0, 

idoE(U+Uk)dZ, = -ikdZ,-~~X[~zdZ~+Qk(kdZ,)] -dZF, 

id,pwdZ, = dZF, E = 1 -p, 

1 UdZp , u = v - w ,  uo=u/u. 

The meaning of quantities involved in (1 .1)  is clear from I; to simplify the nomen- 
clature, the pointed brackets around the symbols for the dynamic quantities 
describing the mean motion of both phases are dropped. Here X = S(p) is a 
function deiining the effective viscosity ,u = ,uoX(p) of the fluid filtering through 
the lattice of particles, which differs from the fluid molecular viscosity ,uo; do and 
d, are the densities of the fluid and the particle substance. Quantities involved in 
the relation for the spectral measure dZF of the random pulsation of the inter- 
phase interaction force in (1.1) (in particular, those depending on the particle 
radius a)  are specified by equations (1.2)-( I .4) below. Note that equations (1 .  I )  
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are related to the equilibrium state of a disperse system when v, w and p do not 
depend upon the space co-ordinates or time. 

Expressions for p1 and p2 and Kl and K2 follow from an equation for the sta- 
tionary drag force Fa experienced by suspended particles inside a unit volume of 
the mixture. Such an equation can be in principle obtained theoretically or on the 
basis of experiments. Below we use Ergun’s (1952) semi-empirical relation 

Fa = d o P ( P l K l d + P 2 K 2 d u f )  Uf ,  ut = cw 

(1-2) i 1.75 25 P 1 9 v o  p - - ,  li’ - _ _  h’ - _  f l l=2$)  2 -  2a I d -  3 €3’ 2d - $ 9  vo =-. 
d0 

The force given in (1.2) satisfies the relation 

-Vp+dog-F, = 0. 

On the other hand, the corresponding relation including Kl and K2 instead of 
Kld and K2d follows from the equation of momentum conservation for the fluid 
phase in the stationary homogeneous flow and has the form 

C( - Vp + dog ) - dop(P1 li; + /?2 Ei, U)U = 0. 

By comparing these relations we get from (I. 2 )  

Kl = K = @Kid = 35p(3~)-l, K2 = GK2d = I. (1.3) 

It is essential that Ergun’s formula (1.2) as well as (1.3) is valid for 

p > 0.2-0.3. 

To extend the range of validity of the expression for K to small values ofp, we use 
also the following approximate formula: 

= 2.96e-1‘73- 1.96, (1.4) 
which gives a good approximation for If in (1.3) for p > 0-2-0-3 and tends to 
unity as p -+ 0. Note that (1.4) is invalid, nevertheless, at very small values of p, 
when K must decrease as p-+ 0 more slowly than the function (1.4). For such 
values of p one can use Tam’s (1969) result. 

It must be made clear that the functions Kl(p) and K2(p) pertain to the force 
experienced by a rigid random array of particles. The pseudo-turbulent motion 
of the fluid and particles in the general case influences the interaction force, so 
that the mean force acting upon real suspended particles iiivolved in pseudo- 
turbulent pulsations should deviate from (1.2). This is discussed in detail below 
in $3. 

According to I, a representation for the spectral density of the random con- 
centration fluctuations is needed for closure of equations (1.1). Below we use the 
representation derived in Buyevich (I970): 
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where Y ( z )  is the Heaviside step function, D is the tensor of the pseudo-turbulent 
diffusivities of particles, (wr2)  is the mean square of the particle pseudo-turbulent 
velocity, and w and k are the frequency and the wavenumber vector, respectively. 

In  order to give to the reader some idea of the origin of (1.5) we list briefly two 
key motives leading to this representation. First, the ‘local volume concentra- 
tion’ of a monodisperse system can be presented as the sum of certain functions 
differing only in the values of their arguments. Each function is essentially dif- 
ferent from zero only in the close vicinity of some particle centre and marks the 
location of this particle. It can further be shown that the most detailed and 
macroscopically meaningful description of the local concentration may be 
achieved by using the binary correlation function for a dense gas of rigid spheres 
in this sum. This leads to the above expression for the partial spectral density 
(DDpJk) characterizing the random spatial fieldp’ at  a fixed moment. Second, the 
dynamics of concentration fluctuations is assumed to be governed by an equa- 
tion differing from the usual Fick equation. A modified diffusion equation 
hyperbolic in type is introduced and used while deriving the expression (1.5) 
for the complete spectral density Y?,Jw, k). 

This completes the information necessary for the subsequent analysis of the 
pseudo-turbulent motion and its influence on the mean flow. 

2. Pseudo-turbulent diffusion of suspended particles 
The spectral density (1.5) of the random process p’(t, r) depends substantially 

upon the tensor D of the pseudo-turbulent diffusivities of particles, whose com- 
ponents are unknown a priori. This fact presents a serious problem in the deter- 
mination of other statistical characteristics of pseudo-turbulence. It is relevant, 
therefore, to begin with determination of these components as the first necessary 
step in the investigation of equilibrium or non-equilibrium properties of the 
pseudo-turbulent motion under study. Besides, this is of independent interest 
for evaluation of the efficiency of various transport processes caused by random 
pulsations of the dispersed phase in fluidized beds and other suspensions com- 
monly encountered in engineering. 

2.1. Representations for the diflusivities 

There exist, in principle, two possible approaches to the problem of particle 
diffusion. The first one is closely connected with an approximate representation 
of a cloud of suspended particles as a ‘pseudo-gas’ of uniform spheres. In  this 
case, while determining the pseudo-turbulent diffusivities of a particle, one may 
use the well-known methods of the kinetic theory. However, inevitably the 
question arises as to what extent this analogy is true and, in particular, what type 
of interparticle interaction must be assigned to the spheres of the pseudo-gas in 
order to model actual complex interaction between suspended particles. 

The second approach is based on an analogy between random pulsations of a 
particle and those of a fluid element in a turbulent field. This gives an immediate 
opportunity to express the pseudo-turbulent diffusivities of a particle in just the 
same manner as the coefficients of turbulent diffusion. Using the efficient 
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technique developed in the theory of turbulence (see, e.g. Taylor 1921) one can 
write the following relation for the quantity Dfj valid for sufficiently large dif- 
fusion times: 

(2.1) 

Here C,,,(r) is the Lagrangian correlation tensor for the pseudo-turbulent 
fluctuation w' of the particle velocity and can be defined, in accordance with the 
treatment in I, as follows: 

C,,,(r) = J/eiwrYW,W(o,  k ) d w d k ,  (2.2) 

where integration is performed over all frequencies w and throughout the entire 
wavenumber space k.  The spectral density tensor YW,W(w,  k )  resulting from equa- 
tions (1 .  l )  for spectral measures satisfies all the requirements needed for changing 
the order of the w and r integration in the equation obtained by substituting (2.2) 
into (2.1). On doing this and using the known Fourier transform of Dirac's delta- 
function we get from (2.1) and (2.2) 

D.. 2J = 4 1 (y Wi,Wj (o ,  k, +yWj ,Wi (02  k ) )  dk' (2.3) 

If one chooses the co-ordinate system so that the axis x = rl lies along the 
vector u marking the axis of the symmetry of pseudo-turbulence in the equili- 
brium state, then only the diagonal components of the tensors involved in (2.3) 
are non-zero and this tensor equation is reduced to two scalar equations for the 
longitudinal (D, = D,,) and the lateral (D2 = DZ2 = Q3) diffusivities of a particle. 

By solving the equations following from (1.1) at w = 0 and using the expression 
(1.2) for the drag force valid a t  all values of Re ,  we find that 

Hence 

Here the Reynolds number is given by 

R e  = 2avi1uf, uf = cu. (2.5) 
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FIGURE 1. Solution of the equation for y.  

No exact expression for the function S = S(p) is known at present. However, 
as has been pointed out in Buyevich & Markov ( i970) ,  the terms in (2.4) including 
this function influence values of the pseudo-turbulent diffusivities corresponding 
to Re < 1 only slightly. One can easily imagine this to be the case also for Re > 1 .  
Ignoring the above terms and neglecting the last terms within the curly brackets 
in (2.4), which are smaller than the corresponding first terms, we obtain finally 

the quantities @ and k, being given by (1 .5 ) .  Integration of ( 2 . 6 )  using (2.3) leads 
to equations for the eigenvalues D, and D, of the tensor D: 

Here the following dimensionless parameters have been introduced : 

. ( 2 . 8 )  a = €  1+-- 3.5 Re -1dlnK I D2 4 ( 150 p ) dp = p + 0.0233Re' = (m) 
Elimination of Dl and D2 from (3 .7)  yields 

2a2y2Jo + (4ay2 - 1 - y )J2- (1 - y2)J4 = 0. 
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FIGURE 2.  Dimensionless longitudinal diffusivity of particles as determined by (2.9). 
Curves 1-9 correspond to  Reynolds number of 0, 10, 20, 40, 60, 80, 100, 200 and co respec- 
tively. 
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FIGURE 3. Parameter N D  as a function of p and Re 
(nomenclature of the curves is the same a.s in figure 2). 

This equation has a unique positive root, whose dependence upon the parameter 
a from (2.8) is illustrated by figure 1. The quantities Di (i = I ,  2) are expressed in 
terms of this root in a following way: 

Di = UU~D; ,  DZ = NDDT, 

(2.9) 
D -  l + y  y2 i N - 2. 

As Re -+ 0 these equations reduce to those obtained in Buyevich & Markov 
(1970). The dependence of the dimensionless parameter NB and the dimensionless 
longitudinal diffusivity D f  upon p at p+ = 0.60 and various values of Re is shown 
in figures 2 and 3. As can be seen from these figures, D f  regarded as a function of 
p has a maximum whose position is displaced to higher values of p when Re 
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increases. The coefficient DZ behaves similarly, its maximum at any Re corre- 
sponding to a higher value of p than that of 0:. There is a strong anisotropy in the 
pseudo-turbulent diffusion of particles which is very well pronounced at small Re 
but weakens as Re grows. At Re = 200 and as Re-tco (the corresponding curves 
are not plotted in figure 3) the quantity No is essentially independent of p and 
equals 0.226 and 0.420, respectively. So the longitudinal dispersion of particles in 
coarse disperse systems is 2-5-5 times as efficient as the lateral dispersion. 

2.2. Comparison with experimental data 

In  the literature there is a great number of indirect conclusions concerning particle 
diffusion in fluidized beds and in other disperse systems under the most different 
conditions. The main results of the theory, with respect to the general character 
of the dependence of D, and D'upon p and Re, are in a good qualitative agreement 
with experimental evidence. However, the number of systematic and, to a 
degree, exhaustive investigations which could enable us to check the theory 
quantitatively is rather scarce. This appears to be due to difficulties encountered 
while attempting to keep track of a particular particle within a concentrated 
assemblage of many particles and while making a sound interpretation of the 
data, obtained as a result of cumbersome and complicated experiments. 

To confirm the theory from the quantitative point of view, we consider below 
some results for the longitudinal particle diffusivity derived by Carlos & Richard- 
son (1968) from their experiments with a homogeneous bed of transparent glass 
beads (2a z 0.9 em) fluidized by dimethyl phthalate (p,, M 0-1 P). To give a 
satisfactory interpretation of these results, some discussion of the conditions of 
the experiments is needed. 

The mixing experiments mentioned were performed in two ways. First, a 
composite bed was formed by placing a horizontal layer of darkened spheres 
inside the bed before fluidization. An approximate value Dll) of the longitudinal 
mixing coefficient was obtained by comparing the experimental mixing curves 
for darkened beads with a series of curves derived by solving the Fick's diffusion 
equation corresponding to different values of 01'). Second, the r.m.8. displace- 
ment of a tracer particle in the vertical direction was measured and a value Di') of 
the mixing coefficient was calculated from Einstein's formula 

((Ax)') = 2Di')At, (2.10) 

where At is the time interval of observation. These methods gave essentially 
different values for the mixing coefficients. 

One can put forward at least two serious objections to the fbst method. First 
of all, when the characteristic time of the diffusion process is small enough, the 
modified hyperbolic diffusion equation has to be applied instead of the usual 
Fick's equation. This was demonstrated, for example, by Buyevich (1970). I n  
addition (and this is of especial importance), therewas a strong circulation flow of 
the suspended material in the experiments under consideration, so that mixing 
of darkened beads was caused not only by their pseudo-turbulent diffusion but 
also by the convective transport resulting from this flow. In  fact, the mean 
velocity W of the upward flow of particles in the central region of the bed was 
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FIGURE 4. Comparison of the theoretical longitudinal diffusivity (solid curve) with 

experimental data (points) from Carlos & Richardson (1968). 

equal to 1-4 cm/s whereas the filtration velocity ufrc a t  the beginning of fluidiza- 
tion was only 4.8 cmls. The time scale AT of the measurements was about 10 s. 
The convective displacement of a tracer particle during this time was approxi- 
mately given by WAT - 10-40cm whereas characteristic values of the r.m.s. 
displacement observed are of order 1-10 cm. Therefore, one has to draw the con- 
clusion that 01'' describes the total dispersion of particles due both to convection 
and to diffusion and can not be used for comparison with the theory. 

If the trajectory of a single particle is used while averaging in formula (2.10), 
then this formula is valid only when At exceeds sufficiently the time scale of 
pseudo-turbulent pulsations and the mean particle velocity W is equal to zero. 
However, if the averaging is carried out over the trajectories of many particles 
(i.e. over the ensemble) as seems to have been the case in Carlos & Richardson 
(1968), then equation (2.10) is adequate for all At and Ill2) = Dl. Values of D, 
obtained in such a way at  various uf are shown in figure 4. 

The corresponding theoretical curve can be drawn by means of the formulae 
obtained above. The simple cubic lattice of spheres was used in Carlos & Richard- 
son (1968) as the initial close-packed state of the bed, so thatp, has to be put equal 
to 0.524; the Reynolds number changed from 50 to 160 as the dimensionless 
parameter uf/uf* varied in the range 1-3.1. The conformity of the theoretical and 
experimental results can be regarded as satisfactory. 

3. Pseudo-turbulent properties of suspensions at small Re 
Having the expressions for the components of the diffusivity tensor D at our 

disposal we can find various other characteristics of pseudo-turbulence des- 
cribing properties of inner local pulsations of both phases from the statistical 
point of view. To simplify calculations, we consider below, as an example, a 
suspension of small solid particles (Re < 1). Note that pseudo-turbulence in such 
a system is usually rather weak and therefore can be left out completely in 
many problems. Nevertheless, in some cases allowance for it is of principal 
importance (some aspects of this question were discussed in I); knowledge of 

21 FLM 56 
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pseudo-turbulent quantities is necessary also in the analysis of transport pro- 
cesses. 

By introducing the dimensionless spectral measures, frequency and wave- 
number vector 

and taking the parameters r = Re (9K)-l and r / K  ( K  = do/dl)  to be small compared 
with unity one can readily demonstrate that equations (1.1) may be replaced in 
this case by the approximate equations 

whose solution is 

(we use here the co-ordinate system introduced earlier). By equating X in (3.2) 
to zero it is easy to obtain simplified expressions for all the spectral measures 
involve$. Note that it would be impossible to take X = 0 in (3.1) because they 
become degenerate in this case. 

After a simple calculation we get from (3.2) with S = 0 relationships for all the 
spectral densities of interest, namely, 

(an asterisk designates diadic multiplication). Spectral densities of correlation 
functions, including the pressure fluctuations, become zero at S = 0. By using 
equation (1.5) for Y,,(w,k) and integrating (3.3) over w and k we obtain 
representations for the statistical characteristics of pseudo-turbulence in the 
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equilibrium state. These characteristics depend upon the unknown quantity 
( w ‘ ~ )  involved in (1.5). In  particular, we have from equations (2.9) 

I 
(3.4) (w;’) = N,(wi2) = 

q5 = (1 -p/p*)2,  a = E dln K/dp. 

An equation for ( w ’ ~ )  follows and yields 

(w‘2) = #(a2 + ga + 3 )  (1  - &q5)-W. (3 .5 )  

This defines completely the expressions (3 .4 )  and the representations for other 
pseudo-turbulent characteristics as functions of p and u. For example, we have 

(p’v’) = Mu = g,q5u, (p‘w‘) = E q 5 @  + +)u,\ 

(q) = (v; w;) = (Wi2) (j = 2 , 3 ) ,  

(v;v(i) = (v;w;) = (wiwi) = 0 (i + j ) .  

Note that the expressions (3.4)-(3.6) are very sensitive to the choice of the 
function K(p).  To obtain results valid (qualitatively, at least) for all values of p 
within the range 0 top* = 0.6 we use further the approximate formula (1 .4)  in all 
numerical calculations. 

The calculated quantities {wi2)>* = (wi2)>/u2 and N, regarded as functions of p 
are plotted in figure 5. Figure 6 shows the functions M ( p )  = (p‘v;)* and (vi2)* = 

(v;2)/u2. The dependence of the quantity (v;w;)/u2 upon p has the same character 
and is not plotted. As can be seen from (3 .4)  and (3 .6 ) ,  the approximate relation 
Nu = (v(i2)/(vi2) = *(j = 2 , 3 )  holds when ND < 1 as is the case for Re < 1. 

Let us emphasize first that N,IND - 10, i.e. the effective mixing length for 
particle diffusion in the longitudinal direction is approximately ten times as high 
as that for the lateral diffusion. Second, fluid pseudo-turbulent pulaations are 
weaker and substantially less anisotropic than those of particles. 

The pseudo-turbulent normal stresses arising in both phases are of especial 
interest. According to I and I1 they are 

(3 .7 )  I P p  = d,LpU2, Pp = d,LpU2 (i = 1 , 2 , 3 ) ,  

LIP) = p(wi2)/u2, Llf’ = s(v;2)/u2, 

Lp) = N, Lip), L$f) = Nu Lif) (j = 2 , 3 ) .  

The quantities Lip) and Lif) (i = 1 , 2 , 3 )  depend only uponp; they are illustrated in 
figure 7. 

Using the above relations one can also evaluate the pseudo-turbulent diffusi- 
vities of the fluid in the longitudinal and lateral directions. 

21-2 
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FIGURE 5. Dimensionless parameters (w;")* and 
N ,  as functions of p for Re i 1. 
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FIGURE 6. Dimensionless parameters (p'vi)* and (v;")* as functions of p for Re < 1. 
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FIGURE 7. Functions determining the pseudo-turbulent normal 
stresses of both phases. 
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Unfortunately, the reliable experimental data on equilibrium pseudo-turbu- 
lent pulsations available are mostly for systems whose Reynolds number based 
on the particle radius is not small (Re 2 100). Nevertheless, on considering experi- 
mental evidence one may conclude that the character of the dependence of the 
theoretical values of various pseudo-turbulent characteristics uponp and physical 
parameters of both phases as well as their order of magnitude are confirmed 
qualitatively by most experiments concerned with pulsations in homogeneous 
fluidized beds of small particles. 

Now we turn to the examination of the effective interaction force between the 
different phases of a disperse system. As is clear from the treatment in I and 11, 
the mean drag force acting in a real system whose phases are involved in the 
pseudo-turbulent motion differs from the drag force appearing in a flow of a 
fluid filtering through an assemblage of immovable particles. Actually, taking 
the expression for the former force derived in I into account and using the 
formulae (3.6) we can write the following representation for the mean drag force 
fo per unit volume of the mixture: 

fo  = $ / ~ ~ [ K U + ~ { ~ ’ ( V ’ - - W ’ ) ) + - - {  d K  1 d2K ’2)u = A,Ku, 
2 dP2 1 1 (3.8) 

A, = 1 - $[a2 - (c2/2K) d2K/dp2] .  J 
I n  experiments there is usually determined the function KO@), which appears 

in the equation 
f O  = d0/3pKO(p)uO, (3.9) 

where uo is the apparent interstitial velocity of the relative fluid flow caused by 
the mean flow with the velocity u and by the additional pseudo-turbulent flux 
q = - (p’v’) = -Mu (see I). Thus, 

UO = &IS = (116) (EU - (P’v’)) = h , ~ ,  A, = 1 - c’M. 

So we get by comparing (3.8) and (3.9) 

KO = ARK, A, = h,/h,. (3.10) 

This formula enables us to give a natural explanation of the phenomenon of 
reduced resistance of a fluidized bed observed by many workers (see, e.g. the 
review in Davidson & Harrison 1963). In  fact, according to (3.10) the hydraulic 
resistance of a fluidized bed whose particles and the fluid phase are involved in 
pseudo-turbulent motion is somewhat smaller than the resistance of the station- 
ary particulate bed of the same porosity.? The coeflicient A, in (3.10) plays the 
role of an effective drag reduction factor for a fluidized bed. A, is plotted as a 
function of p in figure 8. It follows from this figure that the reduction discussed 
can amount to 20 yo of the total resistance of the corresponding stationary bed. 

t The hydraulic resistance of a stationary bed is influenced to a considerable extent by 
geometrical properties of its packing, so that various beds of the same porosity may 
experience essentially different resistance depending on the type of their packing. When 
comparing the resistance of a fluidized bed with that of a fixed one we refer, of course, 
only t o  random arrays of particles characterized by a chaotic manner of packing. 
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8. Drag reduction factor for a homogeneous fluidized bed. 

This effect is due to the fact that the fluid flowing through bed patterns whose 
porosity is increased because of some fluctuation of the local concentration 
experiences a smaller hydraulic resistance as compared with the resistance in the 
stationary particulate bed of the same mean porosity. This decrease in resistance 
is not completely compensated for by the increase in the resistance force acting 
upon the fluid flowing through patterns whose porosity is relatively low. This 
seems to  be caused by local rearrangement of a fluid flow within the fluctuating 
bed, whereby it is just the patterns with higher porosity through which the fluid 
flows for the most part. Occurrence of the additional fluid flux q in a disperse 
system results in a slight additional increase in the apparent hydraulic resistance 
of the system since q is negative and the coeEcient hi1  describing this part of the 
effect exceeds unity. 

This also provides an opportunity to make an indirect quantitative check on 
the theory even in the case of small Reynolds number. Using values of A, shown 
in figure 8 and Ergun's formula (1.3) for the function K(p), one can easily calcu- 
late the quantity Ko(p) from (3.10). Results of such a calculation are illustrated in 
figure 9. Additionally, the experimental function Ko(p) = E - ~ '  for the hydraulic 
resistance of fluidized beds is plotted in this figure. The exponent - 2.7 in this 
function is chosen as it is the arithmetic mean of the exponents -2.65 and 
-2.75 suggested in Richardson & Zaki (1954) and Goroshkoh, Rosenbaum & 
Todes (1958), respectively. (Note that in experiments the function 

K$(p) = €-2Ko(p) 

is usually determined, cf. (1.3)). 
Characteristics of pseudo-turbulence in a non-equilibrium state of a disperse 

system can deviate substantially from those in the equilibrium state. These 
deviations can be found by means of the general method developed in I and 11. 
To illustrate this, we confine ourselves to consideration of such deviations from 
the Navier-Stokes approximation (see 11) for the simplest shear flow 

= {ul, v2, O},  w = (0, wB, 0}, v2 = constant + yr1, (3.11) 

ul, u2, y andp being constant (the component ul can appear as a result of action of 
the external body force). 
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FIGURE 9. Comparison of various functions describing the hydraulic 
resistence of stationary end fluidized beds at  Re < 1. 

The first step in the calculation of corrections to the equilibrium values of 
various pseudo-turbulent characteristics consists of determining the first-order 
correction 68 to the equilibrium tensor 8 = (w'*w'). After making simple con- 
siderations based on results of I1 we can conclude that the following components 
68,, = 602, appear in the mean flow field (3.11): 

(u; +Nwu;) (w;"*, &3 Y SPl 
12 - 4d0PK 4d0PK 

(3.12) 

The superscript zero denotes the quantities related to the equilibrium pseudo- 
turbulence; X, and ( Z U ~ ~ ) *  = U - ~ ( W ; ~ )  are determined in (3.4) and (3.5). The other 
components of the tensor 68 are zero. 

The appearance of the non-diagonal components (3.12) in the flow (3.11) gives 
rise to tangential stresses SPi%) and 6P&) in the dispersed phase which are ex- 
pressed in terms of 6Bl, and 6821 in the same manner as the normal stresses are 
expressed in terms of (wi2) in (3.7). On equating them to -@)y one obtains the 
following representation for the pseudo-turbulent shear viscosity of the dispersed 
phase : 

(3.13) 

(here we use the relation (1.2) for P = pl). The dependence of q@) on the relative 
fluid velocity u and the physical parameters d,, a and ,uo is clear from (3.13); its 
dependence upon p can be easily visualized with the help of figure 7. The stresses 
6P@) calculated here do not, of course, describe the stresses resulting from possible 
dry friction of the surfaces of particles in contact. 

In  accordance with the method of I and 11, the Navier-Stokes correction to 
the additional fluid flux can be found by means of the relations 

sq = R[~ ,VIM,  RCp,v] = q o ( c q - 1 .  



388 Yu.  A .  Buyevich 

Keeping in mind that the equilibrium flux qo is defined by 

we can mite  
q: = - MUi (i = I, 8,3)  

and, further, using (3.12), 

(3.11) 

Quite analogously, the tensor 8(v'*v') can be defined as follows: 

s(+j:) = ~ ( R ~ , [ v ,  VIM,, + R,JV, VIM,,), 

only the diagonal components of the tensor Rjj[v, v] being different from zero: 

Hence it follows that only the components S(vivL) = S(vLv;) of the tensor 
S(vf*vf) differ from zero. They are expressed in the form 

y (U.?+NvuE +&,u2 '+ u2 ') (u;+NWu;)(vi2)*. s(v;v;) = -- (3.15) 
8d&K u?+NwuZ, Nwu:+u2, 

Thus, the pseudo-turbulent shear viscosity r f f )  of the fluid phase is represented in 
the form similar to that for y@): 

Nv u' "" ) (u: + N,,ui). (3.16) 
1 d a2L(f) u:+NvuE 

36 ,uo K i u: + Nu,u;+NWu4 + u; 
T'f' = - 0 1 

Equations (3.13)-(3.16) are greatly simplified when u, or u2 vanish or when 
u1 and u2 are of the same order of magnitude but N, < 1 and so forth. As follows 
from the analysis in I and 11, the expressions for the pseudo-turbulent viscosities 
of both phases obtained here are valid in the shear flow (3.11) only. The analogous 
quantities in flows of different structure can be essentially different. 

It is evident that, in the general case, the dynamic parameters characterizing 
the mean flow (i.e. the scalars p andp and the vectors v and w) can not be looked 
upon as quantities known apriori. They must be obtained by solving theequations 
for the mean motion of both phases of a disperse system, regarded as co-existing 
interacting continua, under proper boundary conditions. These equations in the 
Eulerian and Navier-Stokes approximations were considered in detail in 11. In 
order to make this assertion more understandable we consider, by way of 
example, the situation when the requirement Q, = m1 + q, = 0 is imposed upon 
the flow (3.11). This requirement does not mean that the quantity u1 must vanish. 
In fact, from the formulae above we have in this case 

&,= (E--)ul+6q,= 0, 

the quantity 6ql depending upon u1 in accordance with (3.14). This is an equation 
for the determination of u1 as a function of the other dynamic variables (i.e. p 
and u,) . 



Xtatistical hydromechanics of disperse systems. Part 3 329 

4. Eulerian description of the mean motion of concentrated suspensions 
Below we consider some applications of the dynamic equations of the Eulerian 

approximation derived in I1 to analysis of the macroscopic behaviour of zi disperse 
system. I n  the first place, it  is expedient to elucidate those features of these 
equations which lead to the qualitative difference between their solutions and 
the corresponding solutions of the similar equations in which the pseudo- 
turbulent stresses in both phases are not accounted for. A simple estimate shows 
(see e.g. figure 6 )  that the pseudo-turbulent fluid flux q is not very important in 
many cases. Therefore, for the sake of simplicity, we neglect further the corre- 
sponding terms in the equations mentioned. Then these equations can be written 
in the form 

Here K! and K! are the functions K:(p) and K!(p) associated with the mean 
interaction force arising in a real pulsating system, the influence of pseudo-turbu- 
lent pulsations upon this force being taken into account. Representations for 
these functions in terms of h;, hi and various pseudo-turbulent characteristics 
can be obtained at arbitrary Reynolds number with the help of formulae of I in 
the same manner as the representation for KO has been derived above at  small Re. 
In  some cases it is more convenient to regard K: and K: as certain empirical 
functions of p without any reference to Kl and K2. The pseudo-turbulent normal 
stresses appearing in (4.1) must be expressed in terms of p and u by means of 
formulae derived for the equilibrium pseudo-turbulence (e.g. the formulae (3.7) 
for small Re). Terms describing the effective viscous stresses in the fluid phase 
which are due to the molecular viscosity of the fluid and proportional to the 
function X(p) are dropped for simplicity. This is certainly consistent with the 
absence of terms describing the pseudo-turbulent tangential stresses in equations 
of the Eulerian approximation. 

If u < v N w, one can obtain from (4.1) the equations 

(4.2) 

which can be looked upon as the equations for the mean motion of the disperse 
system itself. However, the relative velocity u, though it is not involved in (4.2), 
is needed for determination of the pseudo-turbulent normal stresses, so that 
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solving (4.1) is also necessary. The mean motion of the disperse system can be 
considered as that of some incompressible homogeneous one-phase fluid only in 
a trivial case when gradients of Pp) and Pi? are much smaller than Vp.  However, 
even in this case the system (4.2) is incomplete because there is no equation for 
determination of the mean concentration p and some independent assumption 
concerning this quantity has to be made. This has already been discussed in 11. 

4. I. Distribution of suspended particles over the height of a homogeneousJluidized bed 

Let us investigate (4.1) for the case when w = 0, v = u(x), p = p(x) andp = p ( x ) ,  
the direction of the x axis being opposite to the vector g. Then we have from the 
equation of mass conservation of the fluid phase 

BU = Q = constant, (4.3) 
where the total fluid flow Q = uf is regarded as an external parameter defhing the 
state of the system. By excluding dpfdx from the equations of momentum con- 
servation of both phases in (4.1) we get an equation for p:  

Hence, introducing dimensionless parameters and the co-ordinate <, 

we obtain finally the following equation governing therspatial distribution of the 
dispersed phase in the vertical direction: 

Here the representations of the pseudo-turbulent normal stresses in a form similar 
to that of (3.7) are introduced. 

The partial solution of (4.6) describing the uniform distribution of particles is 

This is an equation determining the concentration p = p@ at given values of 
Hl and H2. In  particular, if Re < 1, one can drop the 1ast:term in (4.7) so-that the 
condition of existence of such a homogeneous distribution has the form- 

€3 - €$HIK,o(p$) - HZK,O(P$) = 0, €@ = 1 -p*. (4.7) 

~ i / K ! ( p * )  < Hl = H < I, (4.8) 
where the subscript * denotes quantities related to the state of close packing. If U 
is less than the quantity on the left-hand side of the inequality (4.8), onerhas the 
filtration of fluid through the close-packed particulate bed; if H exceeds unity, 
isolated particles are brought upwards with the fluid flow. Note that the allowance 
for the pseudo-turbulent stresses is not essential while considering the uniform 
spatial distribution. 

The function +(p) in (4.6) decreases monotonously at any K ,  Hl and H, while p 
grows from p = 0 up to p = p* and has the unique zero at p = p@, where p* is the 
solution of (4.7). The function # ( p )  falls at  small p (0  < p < p,) and increases for 
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FIGURE 10. Schematic diagram of the functions $(p) and ~ ( p ) .  

p > pm. When Re < 1, the function KY(p) coincides at small p (p < p a )  or at  
p = p+ - Sp (Sp < p* )  with K ( p ) ,  introduced above, and can beevaluated with the 
help of the known expressions for the latter function. I n  the general case one can 
write 

I n  accordance with Tam’s (1969) results E = 8 and C = 3/ 4 2 .  Using the relations 
of the preceding section we have at small Re and p 

Lit) NN ip2, 

K(p)  z I + cpz , a ( p )  M ECpZ-1 (P < P a ) -  

L i p )  M p 3 ( 4  + $ao + +), a. = lim a 
p-0 

and, further, 

$ M 1 - 3 K p [ a ~ + ~ a o f ( ~ - 2 / 1 5 K ) ]  z 1--21 s K = $ O  ( P @ P * ) ‘  

So if K is not small, $ < 0 for p < p*. Similarly, we get near p* 

$ = ~ + ( ~ P * / ~ * ) r ~ 2 * + ~ ~ * + 3 ( ~ - ~ / ~ ) 1  = $* (P*-P < P*) .  

Thus, the function $(p )  has a zero at some p = p+ say. The characteristic shape of 
$(p)  is shown in figure 10. The function 

X(P) = lop $(P) dP 

is also plotted in this figure. 
If Re exceeds unity, the quantity $(O) can, generally speaking, be positive so 

that the function $(p )  has an additional zero at  p = p i  apart from the zero at  
p = p6. It is essential that p i  and p$ do not depend upon HI and H2. 

Now we turn to investigation of the integral curves of equation (4.6) in two 
cases p$ < p+ and p6 < p$ at small Re. In both cases we have 

I(l-m/$*l ( ‘E-Eo)  for P 4 P*> L* - l I 4 P * M P * ) l ( 5 - f ‘ )  for P* -P  < P*, 
where to and f‘ are some initial values of the co-ordinate 6. 

dp/dc > 0. At p z pp 
(i) p+ < p+. Within the region p < p+ one has $ < 0 and y i  > 0, so that 

P = P+ + constant x exp c - I H P * ) / $ ( P @ )  I (5 - ‘EO)l, $’ = dlC./dP. 
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FIGURE 11. Integral curves of equation (4.6). 
(4 P@ < Pq4; (b)  P@ ’ Pq4- 

Within the region p$ < p < p$ the derivative dp/d[ is negative, and is positive 
for p > p+; a t  p M pq4 the quantity p is given by 

a prime denoting differentiation with respect to p. The Characteristic integral 
curves corresponding to values of pg and piir which satisfy the inequality p$ < pg 
are shown in figure 11 (a). 

(ii) pc < p$. The analysis is quite similar to that in the case p$ < pc. The 
characteristic integral curves are illustrated in figure 11 ( b ) .  The trivial solution 
p = p$ is also shown in this figure. 

A real distribution p ( f )  may be a continuous function or have discontinuities a t  
some values of f .  Let one such a discontinuity be at f = f * )  with ~(5: )  = p(l) and 
p($) = pt2). The values p(l) and p@) must satisfy a requirement following from 
(4.6). We can obtain this requirement by integrating (4.6) over f in the region 
(5“ - s, f* + s) and by assuming further that s -+ 0. We get 

(P - P$I2 = I 27k(P&l4’(PJl (f - t o ) ’  4’ = d W P >  

X(P ‘9  = x(P‘2)), (4.9) 

the function ~ ( p )  being as defined previously. A pair of values p(l) and pC2) of p 
meeting this requirement is presented in figure 10. These values are such as to 
make the shaded areas ABC and CDE on this figure equal. 

It is of interest to apply the results obtained to analysis of the distribution of 
fluidized particles within a homogeneous ‘ one-dimensional ’ bed. Choosing the 
origin ( = 0 at the upper boundary of the bed so that the axis f is directed down 
toward its lower boundary we can obtain, in accordance with integral curves in 
figure 11) functions p ( f )  of two different types. If the total fluid flow Q is large 
enough and p$ < pc, the continuous profile p ( f )  presented in figure 12(a) is 
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FIGURE 12. Possible distributions of suspended particles within homogeneous fluidized 
beds. (a) p* < pd; (b) p* > p6.  See text for further explanation. 

realized. On the other hand, if Q is comparatively small, i.e. ps > p4, the distribu- 
tion of fluidized particles is described by a discontinuous function p(<) whose form 
is shown in figure 12 (b). I n  the former case the real distribution differs from the 
uniform one corresponding to p = ps a t  all ( although this difference is consider- 
able only within the thin upper region of the bed. In  the latter case the fluidized 
bed consists of three distinct zones. The first zone (.$ < [ < h) is adjacent to a 
lattice representing the lower boundary of the bed, and p increases from some 
value pz a t  the lattice up tops at  the upper boundary of this zone. The value pl can 
not be specified within a scope of the Eulerian approximation but it follows from 
figure 11 (b) that p4 6 pz < p@. The central zone (tl < [ < &) is characterized by the 
uniform distribution of particles. Finally, within the third zone the concentration 
falls from pu down to zero, the number pu being connected with p$ by (4.9). 

The total dimensionless height h of the fluidized bed can be found on the basis 
of the obvious requirement 

(4.10) 

where V ,  is the known volume occupied by particles of the dispersed phase per 
unit area of the lower lattice. It is clear that only the central zone of the bed 
grows when V, (or h) increases, the other two zones remaining completely un- 
changed. Obviously, c1 N 1 and h - .& N 1, so that the thickness of the upper and 
lower zones has the order of magnitude of ( Q 2 / g )  (K  - l)-l. This quantity can be 
considerable for beds of coarse particles fluidized by a liquid, when Q is high and 
K is of the order of unity. 

All these considerations correspond to the function #(p) being of the same type 
as the curve plotted in figure 10. If this function has two zeros, then there are 
additional discontinuities in both profiles in figure 12. That is, the quantity 
p(() does not tend to zero continuously as the upper boundary of the bed is 
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approached but jumps to zero from the value p = po as can be seen from the 
dashed lines in figure 12 (x(p0) = 0). 

The discontinuities in the curves in figure 12 are of the same nature as those in 
solutions of the Eulerian equations for one-phase media. They must vanish when 
a problem in the next Navier-Stokes approximation is considered. The latter 
approximation is necessary also for specification of the value pl of the con- 
centration a t  the lower boundary. 

Small as they may be, the pseudo-turbulent normal stresses play a very impor- 
tant role because they influence considerably the very structure of equation 
(4.6). In  fact, when the pseudo-turbulent terms in (4.6) are neglected, we have 
q5 = 1 instead of the previous more complex expression for this function. It can be 
shown in a quite straightforward way that for q5 = 1 equation (4.6) has no solu- 
tion corresponding to the distribution of a finite number of particles within a finite 
region in space. In  particular, this equation can not be applied in a description of 
the structure of fluidized bed, if pseudo-turbulence is left out of account. 

The distribution of particles within a homogeneous fluidized bed has been 
measured by many workers (see, for example, Bakker & Heertjes 1960; Kobulov 
& Todes 1966). The general character of profiles of p(x) obtained experimentally 
is the same as that of the theoretical profiles in figure 12 but one essential difference 
must be noted. Within the upper part of real fluidized beds there is observed a 
comparatively long ‘tail’ of particles, so that p(x) tends to zero more slowly than 
the solutions of (4.6) presented in figure 12. Apparently, this phenomenon is 
caused by the fact that real particles which are dealt with in experiments are not 
of the same size and the partial separation of particles occurs in a bed, so that the 
tail mentioned above is composed mostly of smaller particles. 

4.2. Stability of the UniformJlow 

As another example, we consider the stability of the uniform flow 

p = p$ = constant, w = 0, v = {u, 0, 01 

with respect to small disturbances depending upon the vertical co-ordinate x. 
Taking for simplicity Re < 1, we have from (4.7) for Ki = 0 

p = constant - dgx, u = (~KO)-~S(K - l)g, KO = K,O, K = dl/do. (4.11) 

Linear equations for small perturbations can be written as follows: 

dip- = at ax 

(4.12) 
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By putting {p ,p ,v ,  w> = {R, P, V ,  W}ei(ot+kx), (4.13) 

one obtains from (4.12) the system of linear algebraic equationsfor the amplitudes 
in (4.13). A necessary condition for existence of a non-zero solution of these 
equations is 

i W 2 ( d ,  6 + d,p) +w[2id0puk + (p-l+ s-1) (d,/!?pKk’O - Bid, s u k p  + 2idopukL$f’)] 

dLp’ d L ( f )  

dP dP 
+ 2id,pukL‘,f’) - i d , s ( u k ) 2 - + i d o p ( u k ) 2 ~  = 0. (4.14) 

It is helpful to simplify (4.14) by using the expressions (4.11) forp and u and by 
introducing the dimensionless quantities 

Equation (4.14) then becomes 

The uniform flow (4.11) will be stable to infinitesimal perturbations (4.13) if 
the imaginary parts of all the roots of (4.15) are positive. Keeping this in mind we 
obtain after a simple calculation a condition of infinitesimal stability in the form 

KTl(P) - TAP) ’ 0, (4.16) 

(4.17) 

where Tl(p) = e(dL$p’/dp + - 2 L p )  f - ~p2f2, 

i T,(p) = p(dL$f’/dp + Lp/€ + 1) - 2p(p + L p / € ) j + p y ,  
f ( p )  = 2 + sd In KO/@. 

It is interesting that (4.16) does not involve the dimensionless number &, i.e. the 
flow (4.11) is stable or unstable to disturbances of all wavelengths simultaneously. 
It can be easily demonstrated by using the above representations for Lp) and 
Ly) that the function T,(p) is always positive (here we restrict attention to the 
case Re < 1, of course). Therefore, the condition (4.16) can not be satisfied no 
matter what the concrete value of K if T,(p) < 0. However, (4.16) could be valid if 

Tl(p) > 0 and K > KO@) = T,(P)/Tl(P). (4.18) 

A simple estimate shows the function TI@) to be positive for sufficiently small p 
and negative for p N p+. In  particular, it  follows from-(3.7) and (4.18) that 

K,(P) = l/p[2a0(a0- 1) -?I, a, = lim a!, p < p*, 
P-tO 

a being defined by (3.4). On calculating a! in accordance with Tam’s (1969) 
formula one obtains 01, z #(Bp)-B and K,(P) z $, so that the instability occurs 
only when K is smaller than 3. For K > $ the flow (4.11) is stable relative to 
inhitesimal disturbances of arbitrary wavelength. 

Thus, accounting for pseudo-turbulent stresses leads t o  a result which is 
qualitatively new as compared with results of known investigations of stability of 
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two-phase disperse flows to infinitesimal perturbations, random pulsations of 
both phases being neglected (see e.g. Jackson 1963; Murray 1965; Pigford & 
Baron 1965). In  fact, such investigations allow the conclusion to be made that 
disperse two-phase flows are always unstable. This point of view was confirmed 
also by stability analysis in Crowley (1971), where the problem of the disrupting 
of a layer of particles moving through a viscous fluid into clusters of particles 
separated by open channels was treated microscopically. In  contrast, brief as it 
may be the above analysis shows that the pseudo-turbulent motion exerts a 
substantial stabilizing influence which is of especial importance at  small p. A 
similar opinion concerning the influence of the ‘pressure” of the dispersed phase 
upon the infinitesimal stability was expressed by Anderson & Jackson (1968). 
However, they assumed this pressure to be isotropic and nothing definite was 
said about its dependence uponp and other dynamic variables describing the mean 
motion whose stability was investigated. 

These examples of application of the conservation equations governing the 
macroscopic behaviour of a disperse system are by no means exhaustive. Never- 
theless, they indicate the great influence on properties of the mean flow which is 
caused by pseudo-turbulence, however weak it may be. These equations (even in 
the simplest Eulerian approximation) involve essential nonlinearities and serious 
mathematical difficulties may be encountered while attempting to formulate 
boundary conditions appropriate for various particular problems concerned with 
disperse systems and to solve the corresponding boundary problems. However, 
one can certainly expect results of such an approach to be suggestive and reveal- 
ing in the matter of qualitative conclusions and order-of-magnitude calculations. 

I would like to thank Dr Otto Chubanov for his assistance in the numerical 
calculation. 
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